skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hall, Michael J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper investigates the microscale engineering aspects of n-type doped GaSb to address the challenges associated with achieving high electrical conductivity and precise dopant distribution in this semiconductor material. AC impedance spectroscopy is employed as a reliable technique to characterize the microstructural and electrical properties of GaSb, providing valuable insights into the impact of grain boundaries on overall electrical performance. The uneven distribution of dopants, caused by diffusion, and the incomplete activation of introduced dopants pose significant obstacles in achieving consistent material properties. To overcome these challenges, a careful selection of alloying elements, such as bismuth, is explored to suppress the formation of native acceptor defects and modulate band structures, thereby influencing the doping and compensator formation processes. Additionally, the paper examines the effect of microwave annealing as a potential solution for enhancing dopant activation, minimizing diffusion, and reducing precipitate formation. Microwave annealing shows promise due to its rapid heating and shorter processing times, making it a viable alternative to traditional annealing methods. The study underscores the need for a stable grain boundary passivation strategy to achieve significant improvements in GaSb material performance. Simple grain size reduction strategies alone do not result in better thermoelectric performance, for example, and increasing the grain boundary area per unit volume exacerbates the issue of free carrier compensation. These findings highlight the complexity of achieving optimal doping in GaSb materials and the importance of innovative analytical techniques and controlled doping processes. The comprehensive exploration of n-type doped GaSb presented in this research provides valuable insights for future advancements in the synthesis and optimization of high-conductivity nanostructured n-type GaSb, with potential applications in thermoelectric devices and other electronic systems. 
    more » « less
  2. Abstract IntroductionFungi biosynthesize chemically diverse secondary metabolites with a wide range of biological activities. Natural product scientists have increasingly turned towards bioinformatics approaches, combining metabolomics and genomics to target secondary metabolites and their biosynthetic machinery. We recently applied an integrated metabologenomics workflow to 110 fungi and identified more than 230 high-confidence linkages between metabolites and their biosynthetic pathways. ObjectivesTo prioritize the discovery of bioactive natural products and their biosynthetic pathways from these hundreds of high-confidence linkages, we developed a bioactivity-driven metabologenomics workflow combining quantitative chemical information, antiproliferative bioactivity data, and genome sequences. MethodsThe 110 fungi from our metabologenomics study were tested against multiple cancer cell lines to identify which strains produced antiproliferative natural products. Three strains were selected for further study, fractionated using flash chromatography, and subjected to an additional round of bioactivity testing and mass spectral analysis. Data were overlaid using biochemometrics analysis to predict active constituents early in the fractionation process following which their biosynthetic pathways were identified using metabologenomics. ResultsWe isolated three new-to-nature stemphone analogs, 19-acetylstemphones G (1), B (2) and E (3), that demonstrated antiproliferative activity ranging from 3 to 5 µM against human melanoma (MDA-MB-435) and ovarian cancer (OVACR3) cells. We proposed a rational biosynthetic pathway for these compounds, highlighting the potential of using bioactivity as a filter for the analysis of integrated—Omics datasets. ConclusionsThis work demonstrates how the incorporation of biochemometrics as a third dimension into the metabologenomics workflow can identify bioactive metabolites and link them to their biosynthetic machinery. 
    more » « less
  3. Introduction Fungi biosynthesize chemically diverse secondary metabolites with a wide range of biological activities. Natu- ral product scientists have increasingly turned towards bioinformatics approaches, combining metabolomics and genomics to target secondary metabolites and their biosynthetic machinery. We recently applied an integrated metabologenomics workflow to 110 fungi and identified more than 230 high-confidence linkages between metabolites and their biosynthetic pathways. Objectives To prioritize the discovery of bioactive natural products and their biosynthetic pathways from these hundreds of high-confidence linkages, we developed a bioactivity-driven metabologenomics workflow combining quantitative chemical information, antiproliferative bioactivity data, and genome sequences. Methods The 110 fungi from our metabologenomics study were tested against multiple cancer cell lines to identify which strains produced antiproliferative natural products. Three strains were selected for further study, fractionated using flash chromatography, and subjected to an additional round of bioactivity testing and mass spectral analysis. Data were overlaid using biochemometrics analysis to predict active constituents early in the fractionation process following which their bio- synthetic pathways were identified using metabologenomics. Results We isolated three new-to-nature stemphone analogs, 19-acetylstemphones G (1), B (2) and E (3), that demonstrated antiproliferative activity ranging from 3 to 5 μM against human melanoma (MDA-MB-435) and ovarian cancer (OVACR3) cells. We proposed a rational biosynthetic pathway for these compounds, highlighting the potential of using bioactivity as a filter for the analysis of integrated—Omics datasets. Conclusions This work demonstrates how the incorporation of biochemometrics as a third dimension into the metabolog- enomics workflow can identify bioactive metabolites and link them to their biosynthetic machinery. 
    more » « less